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~~ ABSTRACTI

-e- investigate various techniques for etermining a toler-

ance limit L such that the probability is jthat at least a pro-

portion P of a population produced in batches exceeds L. First,

VV evaluate the approach of Lemon (1977) for this problem and

then present alternative approaches. If the variance ratio is

known, one may obtain exact tolerance limits. For settings where

-Ae y
the variance ratio is not necessarily known, w describe a proce-

dure, based on the Satterthwaite approximation, for obtaining

conservative tolerance limits.

Key Words: Noncentral t-distribution; Satterthwaite Approximation;

Cluster Sampling.
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1. LEMON'S APPROACH FOR DETERMINING L

Lemon (1977) gives a method for setting tolerance limits on

observations that vary in different batches. He sought to deter-

mine a lower tolerance limit L (where L is a function of the

sample) such that the probability is y that at least a proportion

P of the population is above L, i.e.,

Pr{Pr [X >Llsample ] > P} - y,(1.1)

where X denotes an observation from the population of interest

and where the outer probability in (1.1) is with respect to the

sampling distribution of L.

th th
Let Xij denote the j- test observation from the i-h batch

or cluster, and suppose that the test observations satisfy the

random-effects linear model

Xij =u+bi +Wl i Jl,...,I, ji=l,...,J

th
where V is the overall mean, 1+bi the mean of the i-batch, and

wij a random deviation. We assume that the b i's and wij's are

independently distributed as normal variates with zero means

2 ad
and variances0% and a, respectively. Further, let V denote

13 2the sample mean i=l ill - i X/IJ and let s denote the "between

groups" mean square (MS). The individual observations X have

variance a. -% +a while the sample mean i has variancex o v

(Jbcy2 ) /+ ( IJ), and s2 estimates a
2 -Ja 2+a .

A

Lemon showed that L = -kLs satisfies (1.1) for

kL - TI_ 1 (6,y)/(IJ) 1/2 (1.2)

3



where, !or arbitrary constants a, B and v, TV((a,B) denotes the

100 percentile for a noncentral t distribution with v degrees

of freedom (df) and noncentrality parameter a, and where

6 - K (13)1/2 (1.3)p

2 + 1/2 1/2
B -y / b w R +1(14

-62 + a 2 JR R+ 114
b

R b /aw (1.5)

and K - 100P percentile of the standard normal distribution.P

Generally, tolerance limits are defined in terms of an estimate

of the population standard deviation. Lemon chose to follow this

standard form, and so, computed tables for tolerance factors k,

where

I kLCa/a) - T11 (t5,y)/[B (1) 1/2]. (1.6)

The noncentrality parameter 6 is a (monotone decreasing)

function of R, so, both k and k are functionally dependent on

R. Since R is generally unknown, Lemon proposed taking

L- k-(R) - a (1.7)

where kL.(R) is obtained by substituting the sample moment esti-

mator a (computed from the AOV) for R in expression (1.2), i.e.,

R- aiumm{O,(F-1)/J},
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2 2an 2where F denotes the MS ratio, s /Sw, and sw is defined to be

the "within groups" MS. (If F < 1, one generally assumes 0 2 0

2 2 2 2 -1 2and then combines s and s W to estimate a2.) Define s = s +ww I

(1-J-)s , i.e., s is a linear combination of the between and

within MS's which estimates the population variance a2 . o2 + a2.
x b w

The tolerance limit in (1.7) is equivalent to L =' - (R)sx,

where k'L(R) - kL(R)(s/Sx).

Lemon's justification for using (1.7) was that the vari-

ability in kL(R) was insignificant. Although Lemon recognized

the distribution of kL(R), his "numerical integration.., over the

rough grid" (p. 679) of 3 values for R did not adequately approxi-

mate the variability of kL(R). We obtained the mean and variance

of kL(R), conditional on F > 1, for a variety of examples. The

six cases given in Table 1 are those which Lemon mentioned inves-

tigating. We list the expected value (EV), standard deviation

(SD), and coefficient of variation (CV) of k (R). Lemon claimed

a CV of less than 2% for L(R), whereas we found values from 6 to

21% by careful integration, e.g., CV = 21.3% for Case 3.

In spite of this variability, we have found Lemon's procedure

to be conservative, i.e., the probability

YL(R) - Pr. ,,i(Pr xX > - k•(i).s1iR > PiF > l} (1.8)

generally exceeds y. The probability yL(R) is given in Table 1

for each case considered there. [We evaluate yL(R) by computing

S



(1.8), conditional on F = f, and then numerically integrating

these values with respect to the density of F (truncated at 1).]

These few cases illustrate the conservativeness of Lemon's pro-

cedure. We found that YL(R) appeared to be decreasing in R, e.g.,

for Case 2 in Table 1, yL(1) - .9985, whereas yL(R) was computed

to be .9999, .9799 and .9681 for R - .2, 5 and 10 respectively.

Hence, Lemon's procedure appears to be the most conservative

when J is large and I and R are small.

We offer two intuitive reasons for the fact that yL(R) > y.

First, note that kL(R) is a decreasing function of R, while the

EV of a, conditional on F, is an increasing function of R. Thus,

k(A) tends to compensate for the variability in s, so that - k(R)-s

is more stable than - k(R)-s.

Second, the probability (1.8) is equivalent to

P z + 6 * aa. 1/2(19cr-x < k (R) • (ax/a) • (IJ)l/l 19

Xx

where Z is a standard normal variate. Using the result of

Satterthwaite (1946), S2/a2 is approximately distributed as a
Xx

X2/f variate, where

f - (R+I) 2/[(R+JI) 2/(-i) + (J-l)/IJ2]. (1.10)

Since f is greater than I-1 (though it approaches 1-1 as R tends

to infinity), the "df" in 2 exceed the df for s2. Therefore,x

the tolerance factors kj' which are based on T11 (6,y) tend to be

6

S•-A



larger than necessary. The fact that f is an increasing function

of J and a decreasing function of R reinforces the observation

made earlier that Lemon's procedure is more conservative for

small R and large J.

2. AN ALTERNATIVE PROCEDURE BASED ON THE
SATTERTHWAITE APPROXIMATION

In this section, we discuss a procedure for determining L

which employs the Satterthwaite approximation mentioned at the

close of Section 1. If L = u - k's satisfies (1.1), this corre-
S x

sponds to kI satisfying
S

PrL 6 < k'B(IJ) 1/21 M y.
x x

Since 2l2 is approximately distributed as a X 2 /f [where f is defined
x x f

in (1.10)], we have (approximately)

kS = Tf( 6 ,)/[B(Ij) 1/2. (2.1)

It is informative to investigate k' as a function of R. As

R tends to infinity, k; approaches

kS'(-,) - TI_j(K p r, Y) /v ,

which is the tolerance factor for a random sample of size I.

Hence, when essentially all the variation is between groups, re-

peated measurements within a group provide no additional informa-

tion. At R - 0, k;(O) - TJ_,_C(Kp (IJ) ,/2Yy(IJ)1/2 where

e - (J-l)/(IJ-J+l). (Note that 0 < c < 1 for I > 1.) Thus,
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except for the term e, at R - 0 the approximation (2.1) corresponds

to the tolerance factor for a random sample of size IJ. When 0 < R

< a, ks is greater than ks(0) and less than ks(-). Selected values

of ks appear in Table 2.

If R were known, the tolerance factor k' could be obtained
S

from Table 2 or calculated using (2.2). When R is unknown, one

might consider replacing R in (2.2) with R. Let k'(R) denote k'
SS

evaluated at R - P.. We computed

YS(R) -Pr,, (PrX > 11 - k'(R)sx1 s,1 > P iF > 11 (2.3)

for a variety of examples in order to evaluate the procedure of

taking L - - kS(R)s x . [The computations were performed as de-

scribed in Section 1 for YL(R).] The function ys(R) necessarily

approaches y as R approaches infinity, and Ys(R) exceeds y for R

sufficiently small. However, for intermediate values of R, ys(R)

is generally less than y, e.g., for I - J = 5, P = .9 and y = .95,

Ys(R) is below .95 for R > .5 with infimum .91.

Since the probability ys(R) can fall below y when using L =

P- kS(R), we seek another procedure to replace it. We propose

using kS(R*), where R* denotes an upper n confidence bound for R,

i.e.,

R* - max((FF - 1)/J,O),rl

where F is the 100n percentile of an F distribution with de-
n

grees of freedom v1  1(3-1) and v2  1-1 (Searle 1971, p. 414).

r8
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That is, we enter Table 2 with the upper confidence limit for R

rather than the point estimate of R. Thus using k'(R*) instead

of i(R) results in a more conservative procedure. The problem

here is in choosing a reasonable value for n.

We found it necessary to vary n according to the values of y

and P that are being used. Let y*(R) denote the probability obtain-

ed by replacing k with R* in (2.3). We found that y*(R) is decreas-

ing in J with a limiting value that may be computed using numerical

integration. Thus, we were able to determine n, such that y*(R)
S

> y for all J and R and for I > 5 (the limiting value was increasing

in I). For the following combinations of y and P, the necessary

values of n are

Y

P .90 .95 .99

.90 .76 .825 .91

.95 .78 .84 .92

.99 .80 .855 .93

Lemon's procedure is always conservative, being most conser-

vative for large J and small I and R. Our procedure above is most

conservative for small J and large R. One practical solution here

would be to choose in each situation (based on I, J and vague knowl-

edge of R) the procedure which one expects will produce the smaller

k value. However, if R is known or known to within a close approxi-

mation then the procedure given in Section 3 below should be used.

9



3. PROCEDURE WHEN R IS KNOWN

If the variance ratio is known, this additional information

may be utilized to obtain a tolerance factor which is generally

smaller than those obtained using either of the procedures de-

scribed in Sections 1 and 2. Knowledge of R enables one to pool

the two MS's and thus obtain an estimated SD which has IJ-i df.

The quantity
(s212 )  [(1-1) + I(J-l)(JR+l)/F]

is equivalent to (1-1)(s2/a 2 ) + I(J-l) (s2/a 2), and, therefore is
w w

distributed as a chi-square variate with IJ-i df. Hence, condition-
22 2

al on F, (s2 / 2) is distributed as a known multiple of a X 2

variate. Using this result, the conditional probability,

Pr (sF[Prx{X > U - ksU ,s,F} > PIF] = y (3.1)

for

k - cT iJ- 1(,)Ia)11

with c2 . [I-l+I(J-l)(JR+l)/F]/(IJ-l).

The tolerance limit L - v - k * s may be expressed in stan-

dard form as L - k's, where k' c', with

kj - TIJC1 (6,y)/IB(IJ) 1/2 1  (3.2)

c= - CBS/s x =

([J(R+l)/(F+J-1)] [I(J-1) + (I-1)F/(JR+l)]/(IJ-l) } 1 / 2 . (3.3)

10



We chose to factor k' in terms of k' and c', because kj does not

depend on F. In Table 3, we provide values for k'. The factor

c' is a decreasing function of the MS ratio (and hence, of ,) and

equals 1 when R R. Thus k' is somewhat smaller (larger) than

the table value k' if R is greater (less) than R.R

Given I, J and F, k' is a strictly increasing function of R.

Thus, if one is certain that R < r, then one may enter Table 3

with R - r to obtain k' and then compute c' from (3.3).

For settings where R is unknown, we considered the procedure

of computing an upper 100(1-P)% confidence bound R* for R :'ased

on F, computing k' at R - R*, and then combining the two proba-

bility statements to obtain an overall probability of at least

(y-8). However, this approach produced extremely large (conser-

vative) tolerance factors. This may be attributed to the fact

that c'ki increases without bound as R approaches infinity.

Hence, the procedure based on (3.1) is not recommended unless pre-

cise knowledge about R is available apart from the sample.

4. DETERMINING k' AND k' BY INTERPOLATION
S R

Tables 2 and 3 provide tolerance factors k' and k' respec-S R

tively, for y - .95, P - .9 and .99, I 1 10, and for selected

values of J and R. For combinations of J and . not appearing

in the tables, the tolerance factor k' or k' may be obtained by

linear interpolation in I/J and by linear interpolation in R

for 0 < R < .2, logarithmic interpolation for .2 < R < 10 and

11



linear interpolation in 1/R for R > 10, CFor R - 0, the appro-

priate tolerance factor is the factor for a random sample of

size IJ.) This interpolation scheme is similar to one suggested

by Lemon.

5. EXAMPLES

We illustrate the procedures discussed in Sections 2 and

3 for determining a tolerance limit, employing the example dis-

cussed by Lemon (1977, p. 680). Six samples from each of five

independent batches of material composed the sample from which a

lower tolerance limit for static strength is to be determined,

with P - .9 and y = .95. The summary statistics were P = 186

ksi (thousand pounds per square inch), R - 1.37 and s - 9,04,~X

To determine k; (as described in Section 2.2), we compute an 82,5%

upper bound for R,

R* = [9.22(2.67) - 11/6 - 3.94.

The tolerance factor ks'(R*) comuted from Table 2a equals 2.83,

and hence L - 186 - 2.83(9.04) - 160.4. Hence we can be at

least 95% confident that at least 90% of the material in the

population has static strength above 160.4 ksi. For comparison,

we note that Lemon's procedure produces a tolerance limit of

156.3 ksi (based on k2'(R) - 3.285) which is more restrictive

than is necessary.

To illustrate the procedure for computing k', suppose that,

in addition to the sample information, it is known that R < 1.

12



Then, from Table 3a, we obtain k' - 2.00 and, using (3.3),

c' - .9385. Hence k' - c'k' - 1.877, and L - 169.0 ksi. As

mentioned in Section 3, k' may be much smaller than k or k,'

(as in the case here), yet the validity of the tolerance limit

depends on the assumption about R.

13
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Table 2: One-Sided Tolerance Factors kS for One-Way-Random-S
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Table 3: One-Sided Tolerance Factors k' for One-Way-Random-

Effects-ANOVA
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TABLE 1. Variabilityof \(R) (P-..90, y-.95, R-1)

kL(R)

Case I J k(R) EV SD CV Pr[F > 1] YL (R)

1 5 2 2.714 2.721 .198 .073 .155 .9913

2 5 5 1.889 2.010 .317 .158 .047 .9985

3 5 10 1.388 1.528 .325 .213 .015 .9995

4 10 2 1.878 1.895 .121 .064 .057 .9821

5 10 5 1.308 1.358 .155 .114 .004 .9925

6 10 10 .961 1.005 .130 .130 .000 .9957

16
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TABLE 2. ONE-SIDED TOLERANCE 1'ACTORS k'

FOR ONE-WAY-RANDOM-EFFECTS-ANOVA

a. y - .95 P a .90

J I

2 3 4 5 6 7 8 9 10

R-. 2
2 5.18 3.24 2.70 2.44 2.27 2.16 2.08 2.01 1.96
4 3.08 2.42 2.17 2.04 1.95 1.88 1.83 1.79 1.76
8 2.43 2.08 1.93 1.84 1.78 1.73 1.70 1.67 1.65

16 2.15 1.91 1.80 1.74 1.69 1.65 1.63 1.60 1.55
o 1.89 1.74 1.67 1.62 1.59 1.57 1.55 1.53 1.52

R=1
2 7.68 3.89 3.06 2.69 2.47 2.33 2.22 2.14 2.08
4 5.06 3.15 2.64 2.38 2.23 2.12 2.05 1.99 1.94
8 4.18 2.84 2.44 2.24 2.11 2.03 1.96 1.91 1.87

16 3.81 2.70 2.35 2.17 2.06 1.98 1.92 1.87 1.83
G 3.48 2.56 2.26 2.10 2.00 1.93 1.87 1.83 1.80

R-5
2 14.00 5.14 3.70 3.11 2.79 2.58 2.44 2.33 2.25
4 11.66 4.72 3.48 2.97 2.69 2.50 2.37 2.27 2.19
8 10.66 4.52 3.38 2.91 2.63 2.46 2.3 2.24 2.17

16 10.20 4.42 3.34 2.87 2.61 2.44 2.32 2.22 2.15
c 9.77 4.33 3.29 2.84 2.59 2.42 2.30 2.21 2.14

2 16.56 5.56 3.89 2.24 2.88 2.66 2.50 2.39 2.29
4 14.90 5.29 3.76 3.15 2.82 2.61 2.46 2.35 2.26
8 14.14 5.16 3.70 3.11 2.79 2.59 2.44 2.33 2.25

16 13.78 5.10 3.67 3.10 2.78 2.58 2.43 2.32 2.24
* 13.42 5.04 3.64 3.08 2.76 2.56 2.42 2.31 2.23

R- 20.58 6.16 4.16 3.41 3.01 2.76 2.58 2.45 2.36
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Table 2 (Cont'd)

b. - .95 P - .99J
2 3 4 5 6 7 8 9 10

P,,.2
2 8.83 5.44 4.54 4.10 3.83 3.65 3.52 3.42 3.34
4 5.16 4.04 3.65 3.43 3.29 3.19 3.12 3.06 3.01
8 4.03 3.47 3.23 3.10 3.01 2.95 2.90 2.86 3.83

16 3.56 3.18 3.02 2.93 2.86 2.81 2.78 2.75 2.72
3.11 2.89 2.79 2.73 2.69 2.66 2.63 2.61 2.60

R-1
2 13.28 6.54 5.12 4.50 4.14 3.90 3.74 3.61 3.51
4 8.58 5.24 4.38 3.97 3.73 3.56 3.44 3.35 3.27
8 7.02 4.70 4.05 3.73 3.53 3.39 3.29 3.22 3.15

16 6.37 4.45 3.89 3.61 3.43 3.31 3.22 3.15 3.09
5.79 4.22 3.73 3.49 3.33 3.22 3.14 3.08 3.03

R-5
2 24.83 8.75 6.22 5.22 4.68 4.34 4.10 3.93 3.79
4 20.51 7.99 5.85 4.98 4.50 4.20 3.98 3.82 3.70
8 18.68 7.64 5.67 4.86 4.42 4.13 3.92 3.77 3.65

16 17.84 7.47 5.59 4.81 4.37 4.09 3.89 3.75 3.63
O 17.05 7.30 5.50 4.75 4.33 4.06 3.86 3.72 3.61

R-10
2 29.58 9.49 6.57 5.44 4.84 4.47 4.21 4.02 3.87
4 26.49 9.01 6.34 5.30 4.74 4.39 4.14 3.96 3.82
8 25.08 8.78 6.23 5.23 4.69 4.35 4.11 3.93 3.79

16 24.41 8.67 6.18 5.19 4.66 4.33 4.09 3.92 3.78
G 23.60 8.56 6.13 5.13 4.64 4.30 4.07 3.90 3.77

Rm- c

37.09 10.55 7.04 5.74 5.06 4.64 4.35 4.14 3.98

for all J

18



TABLE 3. ONE-SIDED TOLERANCE FACTORS k'R

FOR ONE-WAY-RANDOM-EFFECT S-ANOVA

a. y .95 P - .90

I

2 3 4 5 6 7 8 9 10

R-. 2
2 4.22 3.05 2.62 2.39 2.24 2.14 2.06 2.00 1.95
4 2.69 2.30 2.11 1.99 1.91 1.86 1.81 1.77 1.74

8 2.20 1.98 1.87 1.80 1.75 1.71 1.68 1.65 1.63
16 1.98 1.83 1.75 1.70 1.66 1.63 1.60 1.58 1.57
c 1.76 1.67 1.62 1.58 1.56 1.54 1.52 1.51 1.49

R-1
2 4.34 3.14 2.69 2.45 2.30 2.19 2.11 2.04 1.99
4 2.89 2.45 2.24 2.11 2.02 1.95 1.90 1.86 1.82

8 2.45 2.19 2.04 1.95 1.89 1.84 1.80 1.76 1.74

16 2.27 2.07 1.95 1.88 1.82 1.78 1.75 1.72 1.69
g 2.10 1.95 1.86 1.80 1.76 1.72 1.69 1.67 1.65

R-5
2 4.45 3.22 2.76 2.51 2.35 2.24 2.15 2.09 2.03
4 3.06 2.58 2.35 2.21 2.11 2.03 1.98 1.93 1.89

8 2.65 2.35 2.18 2.07 2.00 1.94 1.89 1.85 1.82
16 2.49 2.24 2.10 2.01 1.95 1.89 1.85 1.82 1.79
w 2.34 2.15 2.03 1.95 1.89 1.85 1.81 1.78 1.76

R-10
2 4.48 3.24 2.78 2.53 2.36 2.25 2.16 2.10 2.04

4 3.09 2.61 2.37 2.23 2.13 2.05 1.99 1.94 1.91

8 2.69 2.38 2.21 2.10 2.02 1.96 1.91 1.87 1.84
16 2.53 2.28 2.14 2.04 1.97 1.92 1.87 1.84 1.81
co 2.39 2.19 2.07 1.98 1.92 1.87 1.84 1.80 1.78

RI-
2 4.51 3.26 2.80 2.54 2.38 2.26 2.18 2.11 2.05
4 3.13 2.64 2.40 2.25 2.15 2.07 2.01 1.96 1.92
8 2.74 2.42 2.24 2.13 2.05 1.98 1.94 1.89 1.86

16 2.58 2.32 2.17 2.07 2.00 1.94 1.90 1.86 1.83

2.44 2.23 2.10 2.02 1.95 1.90 1.86 1.83 1.80

19
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Table 3 (Cont'd)

b. y - .95 P- .99

2 3 4 5 6 7 8 9 10

R-.2 2 7.08 5.09 4.38 4.00 3.77 3.60 3.48 3.39 3.31
4 4.43 3.81 3.52 3.34 3.22 3.14 3.07 3.02 2.97
8 3.59 3.28 3.12 3.02 2.94 2.89 2.85 2.81 2.79
16 3.20 3.01 2.91 2.84 2.79 2.75 2.72 2.70 2.68
00 2.80 2.71 2.66 2.63 2.60 2.58 2.56 2.55 2.54

R=1

2 7.16 5.16 4.43 4.05 3.81 3.64 3.52 3.42 3.34
4 4.58 3.93 3.62 3.43 3.31 3.21 3.14 3.08 3.04
8 3.79 3.45 3.26 3.14 3.06 3.00 2.95 2.91 2.87
16 3.46 3.22 3.09 3.00 2.93 2.89 2.85 2.81 2.79
5 - 3.15 3.00 2.91 2.85 2.80 2.77 2.74 2.71 2.69

R,,5

2 7.24 5.21 4.48 4.09 3.85 3.68 3.55 3.45 3.37
4 4.71 4.03 3.71 3.51 3.38 3.28 3.20 3.14 3.09
8 3.97 3.59 3.38 3.25 3.16 3.09 3.03 2.99 2.95

16 3.66 3.38 3.23 3.12 3.05 2.99 2.95 2.91 2.88
w 3.39 3.19 3.08 3.00 2.94 2.89 2.86 2.83 2.80

R=10
2 7.25 5.23 4.49 4.11 3.86 3.69 3.56 3.46 3.38
4 4.74 4.06 3.73 3.53 3.39 3.29 3.22 3.15 3.10
8 4.00 3.62 3.41 3.27 3.18 3.11 3.05 3.00 2.97

16 3.70 3.42 3.26 3.15 3.07 3.01 2.97 2.93 2.89
d 3.44 3.23 3.11 3.03 2.97 2.92 2.88 2.85 2.82

RM" 2 7.27 5.24 4.51 4.12 3.87 3.70 3.57 3.47 3.39

4 4.78 4.08 3.75 3.55 3.41 3.31 3.23 3.17 3.12
8 4.05 3.65 3.44 3.30 3.20 3.13 3.07 3.02 2.98

16 3.75 3.46 3.29 3.18 3.10 3.04 2.99 2.95 2.92
- 3.49 3.28 3.15 3.06 3.00 2.95 2.91 2.87 2.85
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